BASICS OF ELASTOMER INJECTION MOULDING
How to have injection moulding machines and processes under control – successfully! The DESMA manual about the basics of injection moulding provides you with an overall picture. This is comprehensive know-how available for direct use in your work: up-to-date, compact and especially clear with many graphics and diagrams.

A smooth and safe production. Even with the latest technologies. You can get informed about the basic knowledge of project engineering and materials, production and moulds, but also about all DESMA machines and innovations and their successful use in the optimized injection moulding process. Contents from practice for practice that not only industry newcomers and trainees can take advantage of, but experienced specialist as well who can update and selectively expand their skills.

We provide you with further support for your work by way of DESMA training offers and the forward-looking DESMA e-training: www.e-training.desma.biz

The team DESMA wishes you good success!
Planning a mould part production typically begins with the consideration which manufacturing concept or automation level would be ideally suited in the specific case. The type of article, the envisaged production quantity as well as raw material costs (elastomer compound) are decisive factors when taking one’s choice. It is always the objective to achieve optimal article quality at minimum manufacturing costs. The comparative calculation must therefore not lack the costs for energy, maintenance, waste and the like.

Quick answer with DESMA CoolApp

Whether and when the usage of a cold runner system is profitable can be swiftly determined with DESMA CoolApp. This CoolApp application developed by DESMA and free available allows for waste savings to be easily calculated when using a cold runner system. These savings are calculated automatically by selecting the adequate cold runner and amortization period is exactly defined. A comprehensive program for article calculation and cavity layout is also made available and thus completes its efficiency.

Almost simultaneously the precise compound recipe is being determined. Above all, the material has to ensure technical product requirements, but also must be easily to process and affordable. It is important that the processing properties of the individual material batches do not strongly fluctuate.

As soon as an appropriate manufacturing concept and an appropriate compound recipe are found, the injection mould and the required machine can be elaborated respectively designed as second step.

After having completed all components, the exact (optimum) process control is established by way of injection tests in the course of which the fine-tuning of the injection mould is also carried out – e.g. optimization of the material distribution onto the individual mould cavities, of injection and/or venting. Compound, mould, machine and process control eventually determine product quality, manufacturing costs and hence profitability of production. Only when these factors are optimally synchronized, a perfect result can be expected.
Various additions have to be added to the rubber base material (base polymer) in order to be able to produce an elastic and long-life end product. Only the addition of a cross-linking agent (sulfur, peroxide, etc.) makes the processing to the elastic end product (vulcanisate) possible. Other substances improve resistance to wear and aging stability. The processing properties as well can be optimized by way of suitable additions. The workable material is therefore called “elastomer compound”. If not being cross-linked and at ambient temperature, consistency of this compound varies between viscous (LSR silicone), plasticine-like (solid silicone) and solid (rubber). With increasing temperature, the flowability of the compound improves almost proportionally. However, the heat input also reduces the latent period after which the chemical cross-linking (vulcanization) starts. In this process, solid compounds (cross-linking points) between the individual macro molecules of the base polymer gradually develop. This drastically reduces the flowability of the mass, and the material response gradually changes from plastic to elastic. This reaction starts earlier and develops faster at higher temperatures. Stopping the heat input permits the cross-linking reaction to be aborted prematurely. Thus depends on the compound recipe, the mass temperature curve, and the required degree of vulcanization. With thick-walled products, in particular, you must bear in mind that the cross-linking process continues after demoulding for a short while (while the product is cooling down), since a lot of heat is still stored in the product. With a medium wall thickness, this “postvulcanization” is approximately 10%. To achieve the required final quality, the products can also be post-vulcanized or fully cured in a curing oven. Due to the lower machine hour rate, this frequently results in lower costs. The vacuum oven also permits specific degassing.

2.1 Vulcanization

With increasing temperature, the flowability of the compound improves almost proportionally. However, the heat input also reduces the latent period after which the chemical cross-linking (vulcanization) starts. In this process, solid compounds (cross-linking points) between the individual macro molecules of the base polymer gradually develop. This drastically reduces the flowability of the mass, and the material response gradually changes from plastic to elastic. This reaction starts earlier and develops faster at higher temperatures. Stopping the heat input permits the cross-linking reaction to be aborted prematurely. The maximum possible cross-linking density (~ 100 % cross-linking degree) is limited by the compound recipe / the cross-linking agent in the compound.

To avoid cross-linking before or during cavity filling, „retarders” are added to the compound. After the mould has been filled, however, the reaction shall start and progress as fast as possible. „Accelerators“, that take effect with the cross-linking reaction, help here. The required vulcanization or cure time thus depends on the compound recipe, the mass temperature curve, and the required degree of vulcanization. With thick-walled products, in particular, you must bear in mind that the cross-linking process continues after demoulding for a short while (while the product is cooling down), since a lot of heat is still stored in the product. With a medium wall thickness, this „postvulcanization” is approximately 10%. To achieve the required final quality, the products can also be post-vulcanized or fully cured in a curing oven. Due to the lower machine hour rate, this frequently results in lower costs. The vacuum oven also permits specific degassing.
2.2 COMPOUND TEST

Vulcameter Test (MDR)

Standard test procedure for production release after the compound has been produced.

- Rheological and precuring behaviour at constant temperature
- The small amplitude and low frequency produce only minimum shearing / friction
- Corresponds to the process flow in the CM process (vulca-presses)

Since the mass temperature development in injection moulding is not constant, and the shear rate is much higher, the determined data cannot be used directly for setting the injection moulding machine.

However, the torque curve and a little experience permit at least the approximate processing properties of a compound to be assessed. Such a statement is possible for the following points:

a) Flowability during injection (necessary pressure)
b) Processing time (max. injection time)
c) Vulcanization rate (necessary cure time)

The known cure time optimization systems / cure time calculators also use (among other things) cure-meter data to maintain the article quality at a constant level, even at changing production conditions.

Measuring mixers (from Brabender, for example)

The measuring mixer is another, less known, test method. Its structure is very similar to the compounder. The mass temperature can thus be measured exactly during the test. The higher resolution permits changes to be detected that are still in the range of the measuring fluctuations of the cure-meter.
3. PRODUCTION METHODS

3.1 VULCA-PRESSES (CM PROCEDURE)

1. Insert the cold compound into the mould cavity
2. Closing and pressing of the mould (cavity filling)
3. Vulcanization
4. Open the mould, demould the article, cleaning the split lines

BENEFITS	**DISADVANTAGES**
Low investment costs | Very long cycle time
Simple technique | Irregular cross-linking
High number of cavities possible | Reworking necessary
Small compound shearing | High waste proportion (flash)

Blank preparation necessary

3.2 TRANSFER PRESSES (TM PROCEDURE)

1. Insert cold compound into the transfer pot
2. Closing and pressing of the mould (cavity filling)
3. Vulcanization
4. Open the mould, demould the article and transfer sheet, cleaning

BENEFITS	**DISADVANTAGES**
Shorter cycle time | More complex moulding techniques
More regular cross-linking | Higher costs
High number of cavities possible | High waste proportion (transfer sheet)
Low-flash articles possible | **Blank preparation necessary**

3.3 INJECTION MOULDING (IM PROCEDURE)

with hot runner
1. Closing and pressing of the mould
2. Injection process (cavity filling)
3. During vulcanization time: plasticizing and dosing of the compound
4. Open the mould, demould the article and runner, cleaning

BENEFITS	**DISADVANTAGES**
Very short cycle time | High investment costs
Regular cross-linking | Lower possible number of cavities
Automatic intake and dosing | Without CRB: much waste
Articles without reworking possible, With FlowControl cold runner block without waste!

with cold runner block
1. Closing and pressing of the mould
2. Injection process (cavity filling)
3. During vulcanization: plasticizing and dosing the compound
4. Open the mould, demould the article and runner, cleaning

BENEFITS	**DISADVANTAGES**
Flexible moulding techniques | More complex moulding techniques
More regular cross-linking | Higher costs
High number of cavities possible | Higher possible number of cavities
Low-flash articles possible | **Blank preparation necessary**

DEMSA MANUAl | PRODUCTION METHODS | DESMA MANUAl
8. This project was supported by the following companies.
Ideas and solutions in rubber compounding

Well, that’s one way of trying to increase your success.

Or you choose KRAIBURG! This way you can be sure you’ve made the perfect decision.

Gummiwerk KRAIBURG GmbH & Co. KG
www.kraiburg-rubber-compounds.com

CREATING TOMORROW’S SOLUTIONS

BORN TO BE TOUGH:
HIGH-PERFORMANCE SILICONES
FOR CABLE ACCESSORIES

Cable accessories made of WACKER silicones for use in transmission and distribution cables play a key role in ensuring a reliable power supply. This is because our silicones exhibit outstanding dielectric properties, elasticity, weatherability and resistance to tracking and arcing. WACKER silicone rubber grades permit various types of field control to be realized, from medium to high voltage, for both push-on and cold-shrink technologies. Our experts would be happy to advise you on how your products can benefit from WACKER silicones. Call us or visit our website at www.wacker.com

Wacker Chemie AG, Hanns-Seidel-Platz 4, 81737 München, Germany
Infoline +49 89 6279-1741, info@wacker.com
FOCUSING ON TOP PERFORMANCE.
FOR A WORLD IN MOTION.

In the rubber industry, Rhein Chemie as a leading supplier of premium solutions enables maximum creativity and innovation. For our customers, we are on-site worldwide. With production facilities and technology centers. And with products like Aflux®, Aktiplast®, Antilux®, Rhenobuid®, Rhenocure®, Rhenogran®, Rhenosid®, Rhenomark® and Rhenoshape®. For tailor-made processing of all kinds of rubber applications – from tires to profiles, hoses, cables and seals to drive elements. Thus, we have ensured that rubber products keep our world in motion as sustainably, efficiently and profitably as possible – for over 120 years. That's what we call top performance for top performance.

Solutions for the rubber, lubricant and plastics industries.

Whatever requirements move your world:
We will move them with you. www.rheinchemie.com

Meet XIAMETER® RBL-9200 Series LSRs:
The new standard for injection molding speed and quality

In a recent molding trial, a XIAMETER® RBL-9200 Series LSR increased injection speed by more than 50%, reduced injection pressure by 80% and cut overall cycle time by 40%. Imagine what an LSR like that could do for you.

Learn more about XIAMETER® RBL-9200 Series LSRs – the general-purpose liquid silicone rubbers that are setting new standards for processing speed and end-product quality – at www.xiameter.com/RBL-9200.
Increasing energy prices, cost pressures, strict environmental requirements – Sytronix, the pump with intelligence in the drive, is the ingenious solution for your machines. With demand-based control via the electric motor, you consume up to 80% less energy and reduce noise by up to 20 dB (A). Sytronix utilizes the unique Rexroth pump range and is the result of many years of application experience combined with our know-how in the integration of hydraulics and electrics. Numerous pre-configured sets with extensive hydraulic control functions help streamline your engineering. The result: tailor-made solutions that are easy to install. Contact us today and experience for yourself how Sytronix can be exactly the right choice for your application.
Mono-Coat® semi-permanent release agents allow for:

- Low transfer
- Better rubber-to-metal bonding
- Reduced mould fouling
- Better rubber flow
- Various slip levels
- Reduced downtime

Release Agents for the Rubber Industry.

Release Innovation™

www.chemtrend.com

Trennmittel für die Gummi-Industrie.

Mono-Coat® semi-permanente Trennmittel sorgen für:

- Geringen Übertrag
- Bessere Gummi-Metall-Verbindung
- Geringere Formverkrustung
- Besseren Gummifluss
- Verschiedene Gleitfähigkeiten
- Verringerte Stillstandzeiten

www.chemtrend.com

Quality verification on the entire part surface, based on a 100% surface inspection with Double Table Technology (DTT)

High throughput with up to 10 complete part inspections per second.

NEW 2013

Your solution for fully automatic inspection of rubber and plastic parts

Quality control with SPC (Statistical Process Control)

Inspection at all surface traces with DCT (Dynamic Contour Tracing)

www.nelavisionsystems.com

e-mail: sales@nela.de

BRÜDER NEUMÜHLEN GMBH
Gottlieb-Daimler Straße 15
D-77933 Lahr
Tel. +49 (0) 78 21 - 58 08-0
Fax +49 (0) 78 21 - 58 08-662

see. control. automate.
Balluff position measurement technology means the highest precision with different operating principles. For industrial applications. For reliable function. Contactless. Wear-free. From position detection to distance measurement, take advantage of high quality – both flexible and cost-oriented.

LINEAR POSITION SENSING AND MEASUREMENT

Technological variety for efficient customized solutions

SSI
BiSS
Profinet
VARAN
Profibus
EtherCAT
CANopen
Devicenet
IO-Link
analog

BTL PROFILE PF
- Flat design: fits in every niche
- Contactless: up to 15 mm between position sensor and system
- Quick to install
Position measurement technology – the right solution for you

Tel. +49 7158 173-0
www.balluff.com

Reinhardt-Technik

LSR 20/200 ELA
HIGH-QUALITY / PRODUCTIVE / FAIR PRICE for processing of Liquid Silicone Rubber

The electrical drive system of the two component metering and mixing machine ensures simultaneous empying of the material barrels and so defining the material loss below 1%. Furthermore, it conveys the material as safe as a dosing system.

The communicating drives of A- and B-side provide for reproducible dosing accuracy.

Systems engineering in space-saving, movable and forklift-capable design, equipped with many constructively sophisticated features, for the use in your production.

Reinhardt-Technik GmbH • Waldheimstr. 3 • 58566 Kierspe • www.reinhardt-technik.de
PUTTING THE CUSTOMER’S NEEDS FIRST: PROCESS AUTOMATION TECHNOLOGY FOR YOUR SUCCESS

PWS develops sustainable solutions in process and automation technology for various fields in mechanical engineering and application. Our portfolio includes:

- Automation and process control systems
- Industrial computer technology
- Image processing and laser technology
- Special robots and handling systems
- Process visualization
- Process control technology
- Process data acquisition
- Production tracking systems

We support our customers from the first idea to planning and manufacturing up to the point of commissioning and the start of production. They can thus count on high quality and cost-effective production, worldwide. Within the SMS group PWS is part of SMS Meer business area, an international leader in the heavy machinery and plant engineering.

PUTTING THE CUSTOMER’S NEEDS FIRST: PROCESS AUTOMATION TECHNOLOGY FOR YOUR SUCCESS

We support our customers from the first idea to planning and manufacturing up to the point of commissioning and the start of production. They can thus count on high quality and cost-effective production, worldwide. Within the SMS group PWS is part of SMS Meer business area, an international leader in the heavy machinery and plant engineering.

PUTTING THE CUSTOMER’S NEEDS FIRST: PROCESS AUTOMATION TECHNOLOGY FOR YOUR SUCCESS

We support our customers from the first idea to planning and manufacturing up to the point of commissioning and the start of production. They can thus count on high quality and cost-effective production, worldwide. Within the SMS group PWS is part of SMS Meer business area, an international leader in the heavy machinery and plant engineering.

PUTTING THE CUSTOMER’S NEEDS FIRST: PROCESS AUTOMATION TECHNOLOGY FOR YOUR SUCCESS

We support our customers from the first idea to planning and manufacturing up to the point of commissioning and the start of production. They can thus count on high quality and cost-effective production, worldwide. Within the SMS group PWS is part of SMS Meer business area, an international leader in the heavy machinery and plant engineering.

PUTTING THE CUSTOMER’S NEEDS FIRST: PROCESS AUTOMATION TECHNOLOGY FOR YOUR SUCCESS

We support our customers from the first idea to planning and manufacturing up to the point of commissioning and the start of production. They can thus count on high quality and cost-effective production, worldwide. Within the SMS group PWS is part of SMS Meer business area, an international leader in the heavy machinery and plant engineering.

PUTTING THE CUSTOMER’S NEEDS FIRST: PROCESS AUTOMATION TECHNOLOGY FOR YOUR SUCCESS

We support our customers from the first idea to planning and manufacturing up to the point of commissioning and the start of production. They can thus count on high quality and cost-effective production, worldwide. Within the SMS group PWS is part of SMS Meer business area, an international leader in the heavy machinery and plant engineering.

PUTTING THE CUSTOMER’S NEEDS FIRST: PROCESS AUTOMATION TECHNOLOGY FOR YOUR SUCCESS

We support our customers from the first idea to planning and manufacturing up to the point of commissioning and the start of production. They can thus count on high quality and cost-effective production, worldwide. Within the SMS group PWS is part of SMS Meer business area, an international leader in the heavy machinery and plant engineering.

PUTTING THE CUSTOMER’S NEEDS FIRST: PROCESS AUTOMATION TECHNOLOGY FOR YOUR SUCCESS

We support our customers from the first idea to planning and manufacturing up to the point of commissioning and the start of production. They can thus count on high quality and cost-effective production, worldwide. Within the SMS group PWS is part of SMS Meer business area, an international leader in the heavy machinery and plant engineering.

PUTTING THE CUSTOMER’S NEEDS FIRST: PROCESS AUTOMATION TECHNOLOGY FOR YOUR SUCCESS

We support our customers from the first idea to planning and manufacturing up to the point of commissioning and the start of production. They can thus count on high quality and cost-effective production, worldwide. Within the SMS group PWS is part of SMS Meer business area, an international leader in the heavy machinery and plant engineering.

PUTTING THE CUSTOMER’S NEEDS FIRST: PROCESS AUTOMATION TECHNOLOGY FOR YOUR SUCCESS

We support our customers from the first idea to planning and manufacturing up to the point of commissioning and the start of production. They can thus count on high quality and cost-effective production, worldwide. Within the SMS group PWS is part of SMS Meer business area, an international leader in the heavy machinery and plant engineering.

PUTTING THE CUSTOMER’S NEEDS FIRST: PROCESS AUTOMATION TECHNOLOGY FOR YOUR SUCCESS

We support our customers from the first idea to planning and manufacturing up to the point of commissioning and the start of production. They can thus count on high quality and cost-effective production, worldwide. Within the SMS group PWS is part of SMS Meer business area, an international leader in the heavy machinery and plant engineering.
Klöckner DESMA
Elastomertechnik GmbH
An der Bära
78567 Fridingen, Germany

Phone +49 7463 8340
Fax +49 7463 834159
Info@desma.biz
www.desma.biz